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Introduction: CubeSats are nanosatellites that can
be sent up in low earth orbit with previously scheduled
missions. The small size, a 10 cm cube, and low cost of
these CubeSats allow for programs to test new technol-
ogy and designs on a small scale before committing to a
large scale mission. Attitude control is the method of
orienting a satellite in space. Current procedures include
using passive attitude control which is fixing a perma-
nent magnet to the CubeSat to maintain alignment with
the earth’s magnetic field, such as the RAX CubeSats
[1], or to use electromagnetic torquers to move the Cu-
beSats.

Objective: The goal of the project was to examine
the applicability of permanent magnets for active atti-
tude control in CubeSats. For this project, we rotated
permanent magnets to orient the CubeSat. The magnet
is rotated an initial angle away from its equilibrium po-
sition where it is aligned with the Earth’s magnetic field.
Then the magnet feels a torque created by the Earth’s
magnetic field, and the satellite will be rotated back to
its equilibrium position. To test this concept, the team
examined the effects of a magnet’s rotation in a constant
magnetic field on the motion of a small craft.

Method: Because the torque felt by the magnet due
to the earth’s magnetic field is minute we created a puck
to float our instrumental components on water to mini-
mize friction. On this puck was a Beaglebone Black, a
battery source that provides 5V, a wireless antenna, a
motor, a magnet, and two geometric patterns as shown
in Figure 1.

Figure 1: Our puck with the instrumental components
floating in a tub of water

The Beaglebone Black controlled a motor attached to
the magnet. Code was written in Python to turn the mag-
net a specified number of degrees which would then re-
orient the puck so that the magnet aligned with the

Earth’s magnetic field, similar to how a compass needle
will always rotate back to north. The current method for
determining how far the magnet has been rotated is to
track one of the geometric patterns attached to the mag-
net. A LabVIEW program was written to use live video
to track the motion of the geometric patterns, recording
time, position, and angle of rotation of the puck. The
code then sends the angle of rotation over a UDP net-
work. This information is used by the Python program.
The observed oscillations of the puck were compared to
the predicted results to prove active attitude control
could be applicable.

Theory: A dipole in a constant magnetic field when
rotated an angle away from its equilibrium position os-
cillates in the same manner as a simple pendulum. With-
out any retarding or frictional force, the magnet will os-
cillate indefinitely about the equilibrium position. Most
introductory physics courses simplify the topic of sim-
ple harmonic oscillators to a linear differential equation
using the small angle approximation. For large angles
though, the motion of a pendulum is described by a non-
linear differential equation that must be approximated
or numerically integrated with a computer. Using the
constants for a dipole in a constant magnetic field, the
equation for the period of a free, undamped, simple pen-
dulum for large amplitudes is

2
T=2K®T, (1)
where k=sin (92—0) 0, is the initial angle of displace-
ment, K(k) is the complete elliptic integral of the first

kind, To=2m ;3 with I being the moment of inertia of

mbe

our system, m is the magnetic moment of our magnet,
and B, is the magnetic field of the earth. Over the years,
many scientists have developed formulas to approxi-
mate the period of oscillations for a simple pendulum
for large amplitudes. The most accurate approximation
so far was derived by Lima and Arun [2], where the pe-
riod of an undamped pendulum is

In (cos 62—0)

Tia=-To )
1-c057°

(2)

Thus for an ideal case without friction, we expect values
of the period of oscillations for our dipole to be the val-
ues listed in Table 1.
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15 76.39
30 77.39
45 79.11
60 81.66
75 85.20
90 90.00

Table 1: Values of the period for a given initial angle of
displacement using the Lima and Arun approximation.

In order to determine the equation of motion of a dipole
in a constant magnetic field, we must calculate the
torque of our system.

t=la=mxB, (3)
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If we include a damping term due to the frictional forces
of our puck floating on the surface of water, then our
equation of motion becomes
d?e _ miur* /dO
IW—mBe51n6+ oh (a) (5)

where p is the dynamic viscosity of the fluid (water), r
is the radius of our floating puck, and h is the depth of
the fluid. We numerically integrated equation 5 using a
Verlet integration scheme in order to determine at what
time our system will be at a specific angle, as seen in
Figure 2.

Angle from equilibrium vs Time

Time [s]

Figure 2: Numerical integration of the angle from the
equilibrium position vs time for our puck with and with-
out damping for an initial angle of 30°.

Results and Discussion: In our first test, the puck
with a stationary magnet affixed was manually turned to
30° then released. The magnet caused it to rotate back
in to alignment with Earth’s magnetic field after a few
oscillations, as seen in Figure 3. In this test, we see that
the period is about 170 seconds.

In the second test, the puck started at 0°, the motor
and magnet were turned to 30°, then the puck was al-
lowed to rotate until the magnet was again in alignment
with Earth’s magnetic field. In Figure 4, we see that the
period of oscillation lasted about 166s.

Angle vs Time - Passive Control
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Figure 3: Each color represents a different trial for test-
ing passive attitude control.

Angle vs Time- Active Control
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Figure 4: Each color represents a different trial for test-
ing active attitude control.

Figures 3 and 4 show that passive and active attitude
control systems using a permanent magnet provide sim-
ilar periods of oscillation, indicating that active attitude
control is a viable option for adjusting the orientation of
a CubeSat.

The experimental periods were about 100 seconds
longer than the one predicted by the theory. This is
likely due to drag factors not considered in the theoreti-
cal equations such as surface tension, air flow in the
room or unbalanced weight distribution on the puck.

Future Work: The next step is to add additional
magnets to the system. Currently the rotation can only
be controlled along one axis, but 3-dimensional attitude
control will be necessary while the CubeSat is in orbit.
With additional magnets, the camera system used to
track the angle of rotation will not be adequate, and a
magnetic encoder will need to be incorporated to pro-
vide this information for each magnet. In orbit, no natu-
ral damping of the oscillation will be provided by the
environment, therefore controlling functions will need
to be implemented.
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